通知
关于网站更多信息请加whimurmur模板/jpress插件QQ群(1061691290)            jpress从3.x升级到4.x,显示有些问题,慢慢修复中

九章一节 二重积分 二重积分的概念与性质

4447人浏览 / 0人评论 / | 作者:因情语写  | 分类: 高等数学  | 标签: 高等数学  | 

作者:因情语写

链接:https://www.proprogrammar.com/article/158

声明:请尊重原作者的劳动,如需转载请注明出处


    二重积分的概念

    1、定义 设f(x, y)是有界闭区域D上的有界函数

    将闭区域D任意分成n个小闭区域

                              △σ₁,△σ₂, ... , △σₙ,

    其中△σᵢ表示第i个小闭区域,也表示它的面积

    在每个△σᵢ上任取一点(ξᵢ, ηᵢ),f(ξᵢ, ηᵢ)

    作乘积f(ξᵢ, ηᵢ)△σᵢ,并作和

                                    ∑[i=1, n]f(ξᵢ, ηᵢ)△σᵢ

    如果当各小闭区域的直径中的最大值λ趋于零时,这和的极限总存在,则称此极限为函数f(x, y)在闭区域D上的二重积分,记作

                                   ∫∫[D]f(x, y)dσ

    即

                                  ∫∫[D]f(x, y)dσ = lim[λ->0]∑[i=1, n]f(ξᵢ, ηᵢ)△σᵢ

    其中f(x, y)叫做被积函数,f(x, y)dσ叫做被积表达式,dσ叫做面积元素,x与y叫做积分变量,D叫做积分区域,∑[i=1, n]f(ξᵢ, ηᵢ)△σᵢ叫做积分和

    注:在直角坐标系中,也把面积元素dσ记作dxdy,而把二重积分记作

                                   ∫∫[D]f(x, y)dxdy

    其中dxdy叫做直角坐标系中的面积元素

    二重积分的几何意义

    一般的,如果f(x, y) >= 0,被积函数f(x, y)可解释为曲顶柱体的顶在点(x, y)处的竖坐标,所以二重积分的几何意义就是柱体的体积

    如果f(x, y)是负的,柱体就在xOy面的下方,二重积分的绝对值仍等于柱体的体积,但二重积分的值是负的

    如果f(x, y)在D的若干部分区域上是正的,而在其他的部分区域上是负的,那么,f(x, y)在D上的二重积分等于xOy面上方的柱体体积减去xOy面下方的柱体体积所得之差

    二重积分的性质

    性质1 设α,β为常数,则

                           ∫∫[D][αf(x, y) + βg(x, y)]dσ = α∫∫[D]f(x, y)dσ + β∫∫[D]g(x, y)dσ

    性质2 如果闭区域D被有限条曲线分为有限个部分闭区域,则在D上的二重积分等于在各部分区域上的二重积分的和

    例如D分为两个闭区域D₁与D₂,则

                         ∫∫[D]f(x, y)dσ = ∫∫[D₁]f(x, y)dσ + β∫∫ [D₂]f(x, y) dσ

    这个性质表示二重积分对于积分区域具有可加性

    性质3 如果在D上,f(x, y) = 1,σ为D的面积,则

                          σ = ∫∫[D]1dσ = ∫∫[D]dσ

    性质4 如果在D上f(x, y)<=φ(x, y),则有

                          ∫∫[D]f(x, y)dσ <= ∫∫[D]φ(x, y)dσ

    特殊地,由于

                        -| f(x, y) | <= f(x, y)  <= | f(x, y) |

    又有

                         |∫∫[D]f(x, y)dσ| <= ∫∫[D]|f(x, y)|dσ

    一元的情况

    设M及m分别是函数f(x)在区间[a, b]上的最大值及最小值,则

                          m(b-a) <= ∫[a, b]f(x)dx <= M(b - a)

    多元的情况

    性质5 设M、m分别是f(x, y)在闭区域D上的最大值和最小值,σ是D的面积,则有

                        mσ <= ∫∫[D]f(x, y)dσ < Mσ

    一元的情况

    (定积分中值定理)如果函数f(x)在积分区间[a, b]上连续,则在[a, b]上至少存在一个点ξ,使下式成立

                           ∫[a, b]f(x)dx = f( ξ )(b - a)

    多元的情况

    性质6二重积分的中值定理)设函数f(x, y)在闭区域D上连续,σ是D的面积,则在D上至少存在一点(ξ, η),使得

                           ∫∫[D]f(x, y)dσ  = f(ξ, η)σ


亲爱的读者:有时间可以点赞评论一下

点赞(0) 打赏

全部评论

还没有评论!
广告位-帮帮忙点下广告