作者:因情语写
链接:https://www.proprogrammar.com/article/159
声明:请尊重原作者的劳动,如需转载请注明出处
设积分区域D可以用不等式
φ₁(x) <= y <= φ₂(x), a<= x <= b
来表示,其中φ₁(x)、φ₂(x)在区间[a, b]上连续
那么就有
∫∫[D]f(x, y)dσ = ∫[a, b]dx∫[φ₁(x), φ₂(x)]f(x, y)dy
这就是把二重积分化为先对y后对x的二次积分的公式
注:
1、使用以上公式时,积分区域必须是X型区域
2、X型区域D的特点是:穿过D内部且平行于y轴的直线与D的边界上下交于两点
X型区域 先y后x
类型地,如果积分区域D可以用不等式
ψ₁(y) <= x <= ψ₂(y), c <= y <= d
来表示,其中函数ψ₁(y)、ψ₂(y)在区间[c, d]上连续
那么就有
∫∫[D]f(x, y)dσ = ∫[c, d]dy∫[ ψ₁(y) , ψ₂(y) ]f(x, y)dx
这就是把二重积分化为先对x,后对y的二次积分的公式
注:
1、使用以上公式时,积分区域必须是Y型区域
2、Y型区域D的特点是:穿过D内部且平行于x轴的直线与D的边界左右交于两点
Y型区域 先x后y
注:
将二重积分化为二次积分时,选择合理的积分次序是一个关键,选择积分次序时,要考虑积分区域的形状,又要考虑被积函数的特点
极坐标下二重积分计算公式为:
∫∫[D]f(x, y)dσ = ∫∫[D]f(ρcosθ, ρsinθ)ρdρdθ
也是二重积分的变量从直角坐标变换为极坐标的变换公式
其中ρdρdθ就是极坐标系中的面积元素
注:此公式表明,要把二重积分中的变量从直角坐标变换为极坐标,只要把被积函数中的x, y分别换成 ρcosθ, ρsinθ 并把直角坐标系中的面积元素dxdy换成极坐标中的面积元素ρdρdθ
设积分区域D可以用不等式
φ₁(θ) <= y <= φ₂(x), α <= θ <= β
来表示,其中函数φ₁(θ)、 φ₂(x) 在区间[a, b]上连续
∫∫[D]f(ρcosθ, ρsinθ)ρdρdθ = ∫[α, β]dθ∫[φ₁(θ), φ₂(x)]f(ρcosθ, ρsinθ)ρdρ
注:图中极径用的是r而不是ρ,没有找到合适的图
如果积分区域D是图所示的曲边扇形
闭区域D可以用不等式0<=ρ<=φ(θ),α <= θ <= β则有
∫∫[D]f(ρcosθ, ρsinθ)ρdρdθ = ∫[α, β]dθ∫[0, φ(x)]f(ρcosθ, ρsinθ)ρdρ
亲爱的读者:有时间可以点赞评论一下
月份 | 原创文章数 |
---|---|
202206 | 4 |
202205 | 2 |
202204 | 1 |
202203 | 11 |
202201 | 2 |
202108 | 7 |
202107 | 3 |
202106 | 16 |
202105 | 10 |
202104 | 16 |
202103 | 56 |
202102 | 14 |
202010 | 3 |
202009 | 3 |
202008 | 7 |
202007 | 7 |
202006 | 10 |
202005 | 11 |
202004 | 22 |
202003 | 52 |
202002 | 44 |
202001 | 83 |
201912 | 52 |
201911 | 29 |
201910 | 41 |
201909 | 99 |
201908 | 35 |
201907 | 73 |
201906 | 121 |
201811 | 1 |
201810 | 2 |
201804 | 1 |
201803 | 1 |
201802 | 1 |
201707 | 1 |
全部评论