通知
关于网站更多信息请加whimurmur模板/jpress插件QQ群(1061691290)            网站从因情语写改为晴雨            这个网站的模板也从calmlog_ex改为 whimurmur

三章四节 微分中值定理与导数的应用 函数的单调性、极值与最大值最小值

2521人浏览 / 0人评论 / | 作者:因情语写  | 分类: 高等数学  | 标签: 高等数学  | 

作者:因情语写

链接:https://www.proprogrammar.com/article/76

声明:请尊重原作者的劳动,如需转载请注明出处


    极值与判定条件

    定义 设函数f(x)在点x₀的某邻域U(x₀)内有定义,如果对于去心邻域U(x₀)内的任意x,有

                        f(x) < f(x₀) (或f(x) > f(x₀))

    那么就称f(x₀)是函数f(x)的一个极大值(或极小值

    定理2 必要条件

    f'(x₀) = 0 或 x₀ 为一阶不可导点,同理,f'(x₀) ≠ 0点一定不是极值点

    定理3第一充分条件)设函数f(x)在x₀处连续,在x₀的某去心邻域U(x₀, δ)内可导,

    (1)若x∈(x₀ - δ, x₀)时,f'(x)>0,而x∈(x₀, x₀+δ)时,f'(x)<0,则f(x)在x₀处取得极大值;

    (2)若x∈(x₀ - δ, x₀)时,f'(x)<0,而x∈(x₀, x₀+δ)时,f'(x)>0,则f(x)在x₀处取得极小值;

    (3)若x∈去心邻域U(x₀, δ)时,f'(x)的符号保持不变,则f(x)在x₀处没有极值

    注:取得极值的条件即f(x)在x₀连续,且f(x)在x₀左右两侧单调性改变

     定理4 第二充分条件)设函数f(x)在x₀处具有二阶导数且f'(x₀)=0,f''(x₀) ≠ 0,那么

    (1)当f''(x₀)<0时,函数f(x)在x₀处取得极大值;

    (2)当f''(x₀)>0时,函数f(x)在x₀处取得极小值;

    最大值最小值问题

    f(x)在[a, b]上的最大值最小值求解方法

    (1)求出f(x)在(a, b)内的驻点x₁,x₂,...xₘ及不可导点x'₁,x'₂,...x'ₙ

    (2)计算f(xᵢ)(i = 1, 2, ..., m),f(x'ⱼ)(j = 1, 2, ..., n)及f(a),f(b)

    (3)比较(2)中诸值的大小,其中最大的就是f(x)在[a, b]上最大值,最小的就是f(x)在[a, b]上的最小值


亲爱的读者:有时间可以点赞评论一下

点赞(0) 打赏

全部评论

还没有评论!
广告位-帮帮忙点下广告