通知
关于网站更多信息请加whimurmur模板/jpress插件QQ群(1061691290)            jpress从3.x升级到4.x,显示有些问题,慢慢修复中

leetcode游戏算法 529. 扫雷游戏

771人浏览 / 0人评论 / | 作者:whisper  | 分类: 游戏算法  | 标签: leetcode  | 

作者:whisper

链接:https://www.proprogrammar.com/article/833

声明:请尊重原作者的劳动,如需转载请注明出处


529. 扫雷游戏

让我们一起来玩扫雷游戏!

给定一个代表游戏板的二维字符矩阵。 'M' 代表一个未挖出的地雷,'E' 代表一个未挖出的空方块,'B' 代表没有相邻(上,下,左,右,和所有4个对角线)地雷的已挖出的空白方块,数字('1' 到 '8')表示有多少地雷与这块已挖出的方块相邻,'X' 则表示一个已挖出的地雷。

现在给出在所有未挖出的方块中('M'或者'E')的下一个点击位置(行和列索引),根据以下规则,返回相应位置被点击后对应的面板:

1. 如果一个地雷('M')被挖出,游戏就结束了- 把它改为 'X'。
2. 如果一个没有相邻地雷的空方块('E')被挖出,修改它为('B'),并且所有和其相邻的未挖出方块都应该被递归地揭露。
3. 如果一个至少与一个地雷相邻的空方块('E')被挖出,修改它为数字('1'到'8'),表示相邻地雷的数量。
4. 如果在此次点击中,若无更多方块可被揭露,则返回面板。

示例 1:

输入: 

[['E', 'E', 'E', 'E', 'E'],
 ['E', 'E', 'M', 'E', 'E'],
 ['E', 'E', 'E', 'E', 'E'],
 ['E', 'E', 'E', 'E', 'E']]

Click : [3,0]

输出: 

[['B', '1', 'E', '1', 'B'],
 ['B', '1', 'M', '1', 'B'],
 ['B', '1', '1', '1', 'B'],
 ['B', 'B', 'B', 'B', 'B']]

解释:

示例 2:

输入: 

[['B', '1', 'E', '1', 'B'],
 ['B', '1', 'M', '1', 'B'],
 ['B', '1', '1', '1', 'B'],
 ['B', 'B', 'B', 'B', 'B']]

Click : [1,2]

输出: 

[['B', '1', 'E', '1', 'B'],
 ['B', '1', 'X', '1', 'B'],
 ['B', '1', '1', '1', 'B'],
 ['B', 'B', 'B', 'B', 'B']]

解释:

注意:

输入矩阵的宽和高的范围为 [1,50]。
点击的位置只能是未被挖出的方块 ('M' 或者 'E'),这也意味着面板至少包含一个可点击的方块。
输入面板不会是游戏结束的状态(即有地雷已被挖出)。
简单起见,未提及的规则在这个问题中可被忽略。例如,当游戏结束时你不需要挖出所有地雷,考虑所有你可能赢得游戏或标记方块的情况。

下面看一下我的解法

class Solution {
    int[] dirX = {0, 1, 0, -1, 1, 1, -1, -1};
    int[] dirY = {1, 0, -1, 0, 1, -1, 1, -1};

    // 广度或深度,可以建一个visited数组保存处理过的位置,下面是官方解法
    public char[][] updateBoard(char[][] board, int[] click) {
        int x = click[0], y = click[1];
        if (board[x][y] == 'M') {
            // 规则 1
            board[x][y] = 'X';
        } else{
            dfs(board, x, y);
        }
        return board;
    }

    public void dfs(char[][] board, int x, int y) {
        int cnt = 0;
        for (int i = 0; i < 8; ++i) {
            int tx = x + dirX[i];
            int ty = y + dirY[i];
            if (tx < 0 || tx >= board.length || ty < 0 || ty >= board[0].length) {
                continue;
            }
            // 不用判断 M,因为如果有 M 的话游戏已经结束了
            if (board[tx][ty] == 'M') {
                ++cnt;
            }
        }
        if (cnt > 0) {
            // 规则 3
            board[x][y] = (char) (cnt + '0');
        } else {
            // 规则 2
            board[x][y] = 'B';
            for (int i = 0; i < 8; ++i) {
                int tx = x + dirX[i];
                int ty = y + dirY[i];
                // 这里不需要在存在 B 的时候继续扩展,因为 B 之前被点击的时候已经被扩展过了
                if (tx < 0 || tx >= board.length || ty < 0 || ty >= board[0].length || board[tx][ty] != 'E') {
                    continue;
                }
                dfs(board, tx, ty);
            }
        }
    }
}

抄的官方的解法,广度或深度都可以做,这里是深度的,不多说了

下面再看一个广度的

    class Solution {
    // 定义 8 个方向
    int[] dx = {-1, 1, 0, 0, -1, 1, -1, 1};
    int[] dy = {0, 0, -1, 1, -1, 1, 1, -1};

    public char[][] updateBoard(char[][] board, int[] click) {
        // 1. 若起点是雷,游戏结束,直接修改 board 并返回。
        int x = click[0], y = click[1];
        if (board[x][y] == 'M') {
            board[x][y] = 'X';
            return board;
        } 

        // 2. 若起点是空地,则将起点入队,从起点开始向 8 邻域的空地进行宽度优先搜索。
        int m = board.length, n = board[0].length;
        boolean[][] visited = new boolean[m][n];
        visited[x][y] = true;
        Queue<int[]> queue = new LinkedList<>();
        queue.offer(new int[] {x, y});
        while (!queue.isEmpty()) {
            int[] point = queue.poll();
            int i = point[0], j = point[1];
            // 判断空地 (i, j) 周围是否有雷
            int cnt = 0;
            for (int k = 0; k < 8; k++) {
                int newX = i + dx[k];
                int newY = j + dy[k];
                if (newX < 0 || newX >= board.length || newY < 0 || newY >= board[0].length) {
                    continue;
                }
                if (board[newX][newY] == 'M') {
                    cnt++;
                }
            }
            // 若空地 (i, j) 周围有雷,则将该位置修改为雷数;否则将该位置更新为 ‘B’,并将其 8 邻域中的空地入队,继续进行 bfs 搜索。
            if (cnt > 0) {
                board[i][j] = (char)(cnt + '0');
            } else {
                board[i][j] = 'B';
                for (int k = 0; k < 8; k++) {
                    int newX = i + dx[k];
                    int newY = j + dy[k];
                    if (newX < 0 || newX >= board.length || newY < 0 || newY >= board[0].length 
                        || board[newX][newY] != 'E' || visited[newX][newY]) {
                        continue;
                    }
                    visited[newX][newY] = true;
                    queue.offer(new int[] {newX, newY});
                }
            }
        }
        return board;
    }
}

解释在代码里,都是一些常规的用法


亲爱的读者:有时间可以点赞评论一下

点赞(0) 打赏

全部评论

还没有评论!
广告位-帮帮忙点下广告